Table 2a

Handshake latency, and data usage. KEMs combined with rsa:2048 as SIG.

Full Table

Table 2a in full length.

Setup

As described in detail on the hardware setup and software setup pages. Using the execution option with docker will automatically do this for you after installing Dockers prerequisites.

Experiment

The following loop variable file contains all KEMs and one SIG for the experiment

Loop variables for all KEMs

kem_alg: ["X25519", "kyber90s512", "kyber512", "kyber90s768", "kyber768", "kyber90s1024", "kyber1024", "bikel1", "bikel3", "hqc128", "hqc192", "hqc256", "p256_kyber512", "p384_kyber768", "p521_kyber1024", "p256_bikel1", "p384_bikel3", "p256_hqc128", "p384_hqc192", "p521_hqc256", "prime256v1", "secp384r1", "secp521r1"]
sig_alg: ["rsa:2048"]
tc: [""]

Next, we start the OpenSSL server on the server node:

Server


#!/bin/bash

set -e
set -x

# Set KEM to one defined in https://github.com/open-quantum-safe/openssl#key-exchange
[[ -z "$KEM_ALG" ]] && echo "Need to set KEM_ALG" && exit 1;
[[ -z "$SIG_ALG" ]] && echo "Need to set SIG_ALG" && exit 1;

if [[ ! -z "$NETEM_TC" ]]; then
  PORT=eth0
  eval "tc qdisc add dev $PORT root netem $NETEM_TC"
fi

SERVER_IP="$(dig +short server)"
DATETIME=$(date +"%F_%T")

CA_DIR="/opt/shared/"

cd "${OPENSSL_PATH}"/bin
# generate CA key and cert

${OPENSSL} req -x509 -new -newkey "${SIG_ALG}" -keyout CA.key -out CA.crt -nodes -subj "/CN=oqstest CA" -days 365 -config "${OPENSSL_CNF}"

cp CA.crt $CA_DIR

cp CA.crt /out/CA_run${RUN}.crt
cp CA.key /out/CA_run${RUN}.key
SERVER_CRT=/out/server_run${RUN}

# Optionally set server certificate alg to one defined in https://github.com/open-quantum-safe/openssl#authentication
# The root CA's signature alg remains as set when building the image

# generate new server CSR using pre-set CA.key & cert
${OPENSSL} req -new -newkey "${SIG_ALG}" -keyout $SERVER_CRT.key -out $SERVER_CRT.csr -nodes -subj "/CN=$IP"
# generate server cert
${OPENSSL} x509 -req -in $SERVER_CRT.csr -out $SERVER_CRT.crt -CA CA.crt -CAkey CA.key -CAcreateserial -days 365

echo "starting experiment: $(date)"

echo "Server has IP $SERVER_IP"

echo "{\"tc\": \"$NETEM_TC\", \"kem_alg\": \"$KEM_ALG\", \"sig_alg\": \"$SIG_ALG\"}" > "/out/${DATETIME}_server_run${RUN}.loop"

bash -c "tcpdump -w /out/latencies-pre_run${RUN}.pcap dst host $SERVER_IP and dst port 4433" &
TCPDUMP_PID=$!

if [ "$FLAME_GRAPH" = "True" ]
then
  echo "will save flame graphs"
  FG_FREQUENCY=96
  bash -c "perf record -o /out/perf-dut.data -F ${FG_FREQUENCY} -C 1 -g" &
  FLAME_GRAPH_PID=$!
fi

# Start a TLS1.3 test server based on OpenSSL accepting only the specified KEM_ALG
bash -c "taskset -c 1 ${OPENSSL} s_server -cert $SERVER_CRT.crt -key $SERVER_CRT.key -curves $KEM_ALG -www -tls1_3 -accept $CLIENT_IP:4433"

sleep 30

kill -2 $TCPDUMP_PID
kill $FLAME_GRAPH_PID

if [ "$FLAME_GRAPH" = "True" ]
then
    sleep 30
    perf archive /out/perf-client.data
    echo "Flame graph data can be found at /out/perf-client.data"
fi

In the last step, we start the OpenSSL client on the client node:

Client


#!/bin/bash

set -e
set -x

# define variables
# Set KEM to one defined in https://github.com/open-quantum-safe/openssl#key-exchange
# ENV variables
[[ -z "$KEM_ALG" ]] && echo "Need to set KEM_ALG" && exit 1;
[[ -z "$SIG_ALG" ]] && echo "Need to set SIG_ALG" && exit 1;
[[ -z "$MEASUREMENT_TIME" ]] && echo "Need to set MEASUREMENT_TIME" && exit 1;

if [[ ! -z "$NETEM_TC" ]]; then
  PORT=eth0
  eval "tc qdisc add dev $PORT root netem $NETEM_TC"
fi

SERVER_IP="$(dig +short server)"

DATETIME=$(date +"%F_%T")

CA_DIR="/opt/shared"

cd "$OPENSSL_PATH" || exit

echo "Running $0 with SIG_ALG=$SIG_ALG and KEM_ALG=$KEM_ALG"

if [ "$FLAME_GRAPH" = "True" ]; then
  echo "Will export flame graphs"
  FG_FREQUENCY=96
  bash -c "perf record -o /out/perf-client.data -F ${FG_FREQUENCY} -C 1 -g" &
  FLAME_GRAPH_PID=$!
fi

bash -c "tcpdump -w /out/latencies-post_run${RUN}.pcap src host $SERVER_IP and src port 4433" &
TCPDUMP_PID=$!

echo "{\"tc\": \"$NETEM_TC\", \"kem_alg\": \"$KEM_ALG\", \"sig_alg\": \"$SIG_ALG\"}" > "/out/${DATETIME}_client_run${RUN}.loop"

sleep 5

# Run handshakes for $TEST_TIME seconds
bash -c "taskset -c 1 ${OPENSSL} s_time -curves $KEM_ALG  -connect $SERVER_IP:4433 -new -time $MEASUREMENT_TIME -verify 1 -www '/' -CAfile $CA_DIR/CA.crt > /out/opensslclient_run${RUN}.stdout 2> /out/opensslclient_run${RUN}.stderr"

if [ "$FLAME_GRAPH" = "True" ]
then
    kill $FLAME_GRAPH_PID
fi

sleep 30  # Make sure it is finished and written out

kill -2 $TCPDUMP_PID

if [ "$FLAME_GRAPH" = "True" ]
then
    perf archive /out/perf-client.data
    echo "Flame graph data can be found at /out/perf-client.data"
fi

echo "client finished sending $(date), results can be found at /out/results-openssl-$KEM_ALG-$SIG_ALG.txt"


The client automatically stops after the predefined measurement time, while the timer and the server need to receive a SIG INT signal to terminate.

Experiment with Docker

Clone first the repository and then change your current folder to code folder within the cloned repository.

Execute the following command:

/experiment.py --output-dir /opt/experiments all-kem

Evaluation

After the experiment, the results are available in the results folder for client, server, and timestamper. In case of Docker, we only have two folders because of our two node setup and need to copy all PCAPs to the timestamper folder. This step can be done using our prepared data from the hardware timestamping or the results from the Docker-based experiment.

Client

Under client_results on the evaluator all files from the client need to be added.

Timestamper

Under timer_results on the evaluator all files PCAPs need to be added.

The evaluation script loads all PCAPs into a postgressql database and analyzes the data. Finally, the scripts generates CSVs with the corresponding data:

Evaluator


#!/bin/bash

set -x
set -e

# First extract all data from the openssl_client results
mkdir /root/client_results/data_client
chmod 0777 /root/client_results
chmod 0777 /root/client_results/data_client

cd /root/client_results

cp /root/experiment-script/code/plotter/csvgenerator_client.py /root/client_results

python3 csvgenerator_client.py data_client .

pos_upload -r /root/client_results/data_client/

# Extracting data from PCAPs
NUM_CORES=$(pos_get_variable num_cores)

mkdir /root/timer_results/data
chmod 0777 /root/timer_results
chmod 0777 /root/timer_results/data

cd /root/timer_results/data

echo "Process PCAPs using ${NUM_CORES} cores"

env --chdir /var/lib/postgresql setpriv --init-groups --reuid postgres -- createuser -s root || true

parallel -j $NUM_CORES "dropdb --if-exists root{\%}; createdb root{\%}; export PGDATABASE=root{\%}; ~/experiment-script/dbscripts/import.sh {}; ~/experiment-script/dbscripts/analysis.sh {}" ::: ../latencies-pre.pcap*.zst

cp -r /root/experiment-script/code/plotter/* /root/timer_results
cd /root/timer_results
mkdir /root/timer_results/figures
python3 plotcreator.py figures data .
make -i

python3 ~/experiment-script/code/dbscripts/run_tls_analyse.py . data

pos_upload -r /root/timer_results/figures/
pos_upload -r /root/timer_results/data/

FLAME_GRAPH=$(pos_get_variable -g flame_graph/execute_server)
if [ "$FLAME_GRAPH" = "True" ]
then
    RESULT_PATH="/root/server_results"
    mkdir $RESULT_PATH/flame_graph/
    FG_REPO_PATH=$(pos_get_variable -g flame_graph/install/repo_path)
    for filename in $RESULT_PATH/perf*.data; do
        mkdir /root/.debug/
        tar xf "$RESULT_PATH/perf-server.data.tar_$(basename ${filename##*_} .data).bz2" -C ~/.debug
        perf script -i $filename | $FG_REPO_PATH/stackcollapse-perf.pl > $filename.txt
        $FG_REPO_PATH/flamegraph.pl $filename.txt > $filename.svg
        mv $filename.txt $RESULT_PATH/flame_graph/
        mv $filename.svg $RESULT_PATH/flame_graph/
        rm -r /root/.debug/
    done
    pos_upload -r -o flame_graph_server $RESULT_PATH/flame_graph/
fi

FLAME_GRAPH=$(pos_get_variable -g flame_graph/execute_client)
if [ "$FLAME_GRAPH" = "True" ]
then
    RESULT_PATH="/root/client_results"
    mkdir $RESULT_PATH/flame_graph/
    FG_REPO_PATH=$(pos_get_variable -g flame_graph/install/repo_path)
    for filename in $RESULT_PATH/perf*.data; do
        mkdir /root/.debug/
        tar xf "$RESULT_PATH/perf-client.data.tar_$(basename ${filename##*_} .data).bz2" -C ~/.debug
        perf script -i $filename | $FG_REPO_PATH/stackcollapse-perf.pl > $filename.txt
        $FG_REPO_PATH/flamegraph.pl $filename.txt > $filename.svg
        mv $filename.txt $RESULT_PATH/flame_graph/
        mv $filename.svg $RESULT_PATH/flame_graph/
        rm -r /root/.debug/
    done
    pos_upload -r -o flame_graph_client $RESULT_PATH/flame_graph/
fi


The results files are now located in the selected results folder. The following files were used to create the table:

  • *.crt: The used certificate
  • *client_results.csv: This file contains the number of connections and the possibility to link run number with KEM and SIG.
  • *dump-tcp-segments.csv: The number of TCP segments between server and client during the handshake.
  • *median.csv: The median latency in different parts of the handshake according to the further description in the file name.

These files are used together with the blackbox_analysis script to generate the shown table. This step is included as final_analyzer in the docker scripts.

Blackbox analysis


#!/bin/bash

cd /root

git clone https://github.com/WiednerF/pqs-tls-measurements experiments
cd /root/experiment/code/blackbox_analysis

pip3 install -t requirements.txt

# Link the corresponding entries to this folder: kem as kem, sig as sig, level1 as level1, level3 as level3, and level5 as level5

python3 create_analysis.py

python3 derivation_analysis.py

Docker Evaluation Execution

To execute the evaluation using docker, docker and its dependencies needs to be installed on the systems. The current working directory must be at the code folder.

Based on previous Docker Experiment


    ./evaluate.py --output-dir /opt/pqc-analysis /opt/experiments/*

Based on Data from our MediaTUM repository:


     rsync -rP rsync://m1725057@dataserv.ub.tum.de/m1725057/all-kem/ /opt/all-kem/
    ./evaluate.py --output-dir /opt/pqc-analysis /opt/all-kem

This executes all evaluation steps.

Scripts and Data

The following repository contains all files and results including raw PCAPs: